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ABSTRACT

We present an application of statistical signal processnlgniques
to the problem of event detection in wireless sensor netsvaged
for environmental monitoring. The proposed approach ubes t
well-established Principal Component Analysis (PCA) teghe

to build a compact model of the observed phenomena that cap-

tures daily and seasonal trends in the collected measutsmé&ie
subsequently use the divergence between actual measuseanen
model predictions to detect the existence of discrete sweithin
the collected data streams. Our preliminary results shaitthis
event detection mechanism is sensitive enough to detectrbet
of rain events using the temperature modality of a wirelesssr
network.

1. INTRODUCTION

A number of testbedse(g, [1, 2, 3]) have shown the potential
of wireless sensor networks (WSNSs) to collect environmlenteiga
at previously unimaginable spatial and temporal densithgsthe
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the phenomena under observation. These processes areafiién
nated by predictable foregrounds, which can be signifigdatber
than the subtle trends and variations that scientists gnegtito
measure or the small events that they try to detect. In omler t
interpret the measurements, it is then important to sepahase
different signals into independent components. In envirental
monitoring, most sensors witness daily variations of atumfities
and seasonal trends. In addition, there are discrete haveats
(e.g, storms, rainfall, and strong winds) that have a separable e
fect on our data.

We present an approach using techniques of statisticalqigo-
cessing to decompose the sensor readings into variouscaliysi
meaningful components. In our approach, we perform a syep-b
step identification of various foregrounds. We identify thernal
cycle present in both the air and soil temperature senser atad
we account for the effect of seasonal drift. We use all thegep
(daily cycle, seasonal drift) to detect events by identifyivhen
measurements diverge from those expected by the foregsound

Specifically, we explore variants of the Principal Compdeen

same time, these developments present many novel data esanag Analysis method (PCA) [6] to extract features from the daik c

ment challenges. First, our experience deploying an enrniem-
tal monitoring network has demonstrated the shortcomirighe
static behavior of current sensor networks. For examplensc
tists would like to sample the environment at a high freqyetoc
capture detailed information about “interesting” eveihist doing
so continuously would create an inordinate amount of data. O
the other hand, sampling at a lower frequency generatesitgas
but can potentially miss important temporal transientd®d, the
large amount of data that these networks generate congsithée
querying and post-processing stages. Rather than mariealbrs-
ing through the collected data, scientists would prefenterg for
measurements related with certain evertg(significant rainfall).

lected by the network and discover the multiple underlyihggical
processes that generate the observed data. This processesoa
modelof “normal behavior.” Observations that diverge from the
model correspond well with punctuated events. We note that o
can build the PCA model offline using historical data and #hat
small number of parameters summarize the phenomena that the
motes sense. Such a compact representation of the modéégnab
the design of a lightweight event detection mechanism tivad im
real time on the network’s motes.

We evaluate the performance of the proposed mechanism using
data from the Life Under Your Feet environmental sensing net
work [1]. We execute the event detection algorithm to detaict

To address these issues, we need WSNs that can reason abowvents within the deployment area over ten months of thearétsy
the phenomena they observe and adapt their behavior based orifetime. We compare the list of detected events with priéatipn

events they detect. Possible adaptation strategies mabdng-
ing the sampling rate as well as waking up nodes in the netteork
increase spatial coverage of the detected event [4, 5].

Sensors measure the superpositions of several procesgag dr
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data recorded by a weather station at BWI airport.

This specific application reveals another aspect of theqwep
approach: while the motes in our network have soil moistere s
sors, these sensors cannot detect the onset of a rain eeeatjde
soil moisture rises only after the water seeps through tiile ke
stead, we use a combination of air and soil temperature measu
ments to detect when rain starts to fall. Figure 1 indicétes tem-
perature varies immediately with the onset of an event, evhdil
moisture lags by at least an hour. The model allows us to tletec
the rain event rapidly based on indirect evidence prior ertin’s
direct effect on soil moisture.

All the data and code used in this paper are publicly avaslakl
http://1ifeunderyourfeet.org/en/src/
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Figure 1: Air temperature is a better indicator of the onset o a

rain event compared to soil moisture.

1.1 Environmental Sensing

While our solution generally applies to WSNs that collectyéa
amounts of data through multiple modalities, we presentdmur
sign through a environmental monitoring application weedeped
and was deployed for over 18 months at an urban forest in-Balti
more, MD. The purpose of tHdfe Under Your Feehetwork is soil
monitoring in which each of the network’s ten motes periatlic
collects measurements, including soil temperature arldaaiid-
ity, as well as ambient temperature and light.

We also extract weather information (air temperature arma ra
events) from a weather station at the BWI airport located #26sn
away from our deployment site. The data scraping programsee u
inserts this data into the same database, allowing metegicall
information, such as rain duration and amount of rainfail,be
correlated to the data collected by the sensor network.

2. RELATED WORK

PCA event detection constructs a model of system behavier. W
consider two applications of model-based event detectioder
scribing related work. The first is an offline variant in whietent
detection happens at the database that stores the measts@uie
lected by the network and is used to automatically identifyget-
esting” regions within the swaths of data acquired by thessen
network. The other is online in that motes in the network uselm
els to detect events and subsequently alter their behavior.

Offline event detection provides a model suitable for quegyi
events from noisy and imprecise data. Both database sy$teis
and sensor networks [9, 10, 11] have explored model-basetiegu
as a method for dealing with irregular or unreliable data. dels
in these systems include Gaussian processes [9], int¢igpo[42,
13], regression [9, 14], and dynamic-probabilistic mod8|s10].
We provide a PCA-based model specifically suited to evergadet
tion.

data, compressing or suppressing entirely the data str&anip,
20]. Our PCA model may be used for suppression and compressio
and may also be used to alter the behavior and configuratitireof
network,e.g. only collecting data when events occur and turning
off large portions of the network at other times.

Most research on event detection describes data fusionrand i
network event processing, rather than the detection of amtev
based on the data. REED provides in-network joins to report
event conditions that are programmed declaratively [21the®
systems ensure that multiple sensors detect an event pria-t
porting it [22, 23]. Our work focuses on using PCA models to
rapidly and accurately report an event at a single mote. Jihigle
mote report serves as an input to fusion and event query a&valu
tion. Other ecological monitoring systems use simple gsdge
or trigger/threshold based event detectors at each moje [24

We use PCA to determine that a single or a sequence of measure-
ments aralissimilarto the normal behavior of the system, charac-
terized by its principal components. Similar uses of PCAude
anomaly and intrusion detection in computer networks [8% aad
leakage detection in gas sensor arrays [27]. Recently, P&A h
been applied to event detection in the Internet, specificgdén-
tifying correlated throughput and loss events on multipieetnet
paths [28]. However, the authors provide no details of tlagi
proach. There is a wealth of literature on the applicatio® GiA
for process control and process monitoring. [29] is one afiyrnza-
pers that address the application of PCA to process cortfian
referred to as multivariate process control. Moreover, PDAs
application as a tool for visualizing outliers in multidinsonal
data described by a large collection of similar curves [30].

Finally, modeling diurnal cycles exhibited by atmospheem-
perature is a well studied problem in the environmental antba
spheric sciences community. Smith et al. [31] describe Huay t
model surface temperature using empirical orthogonal tfans
(EOFs) and use the projections on the orthogonal functions f
extracting features and analyzing the temperature vditiafriom
different regions. EOFs are nothing but the basis vectotsioéd
from PCA.

3. METHODOLOGY

Principal component analysis [6], also known as the Karehun
Loéve transform (KLT), is a powerful statistical tool fargplify-
ing data by reducing high-dimensional datasets into detasith
lower dimensions that approximate the original data. Iltsdse
through singular value decomposition (SVD): an orthogdimalar
transform of a matrix containing the original data into anieglent
diagonalized matrix.

Mathematically speaking, I&™ be ann x m matrix, in which
each row represents a new set of measurements and each column
represents the measurements at a given time of day. In otirelsy
the number of columns represents the dimensionality of tigénal
space. The PCA transformation is then given¥y = XT .V,
in whichUSVT = SVD(XT), T is them x m diagonal matrix
containing the singular values ®*, V is them x m matrix of

In the online case, sensor networks reduce the bandwidth re-right singular vectors that form an orthonormal basis. is gaper,

quirements of data collection by suppressing results thafoem

to the model or compressing the data stream through a moplel re
resentation. This has coincident benefits on resource aed)en
usage within the network. If sensors measure spatiallyetated
values, values collected from a subset of nodes can be used-to
terialize the uncollected values from other nodes [15, 1%in-
ilarly, temporally-correlated values may be collectedéquently
and missing values interpolated [10, 17]. By placing modetse
mote itself, the mote may transmit model parameters in lfeh®

we also refer to these as obasis vectorsU is then x m matrix
containing the left singular vectors. The¥i,T is the projection of
the original data on the basis vectors which is anothern matrix.

In practice, we select the firpt < m eigenvectors with maxi-
mum eigenvalues. These eigenvectors represent the “mesirim
tant” dimensions in that these dimensions have the maximanm v
ance and strongest correlation in the dataset. We thenlatan-
other projectionY } = X™ - V,, whereVy, is generated by tak-
ing the firstp columns ofV (i.e. the columns that correspond to the
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Figure 2: Mean subtracted profile of air and soil temperature
(latter scaled up by a factor of 20) for a typical 24 hour cycle

highestp eigenvalues). The dimensionality&flf isn x p, where
p is the dimensionality of the resulting subspace.

Thus, the original dataset can be reduced to just those dimen
sions (eigenvectors) with large eigenvalues. Data arsmtysiy be
performed in the lower dimensional representation withdyéie
delity to results on the original data. The lower dimensi@space
offers benefits not only in data size, computational conipteand
ease of visualization, but also these vectors represeritythieal”
patterns of the data, whereas the residuals correspondyoic¢al”
behavior.

3.1 Applying PCA to sensor measurements

We apply PCA to air temperature and soil temperature sensor

readings. Sensor readings exhibit typical diurnal cyclekich
dominate every other signal present. Figure 2 shows the mean
subtracted profile of a typical day for air temperature arititem-
perature. We note the rise in temperature as the sun riséwein t
morning and the fall in temperature as the sun sets in tharyéor

air temperature. We also observe that soil temperaturegasdags
air temperature changes by several hours, owing to thaarathe
soil. There is a noticeable phase shift between air temperaind
soil temperature. This pattern (AC component) is exhibligall
normal (non-event) days of all seasons around the averdge va
(DC component) for that day.

LUYF sensors record measurements once every minute. We ag-

gregate multiple readings, which produces a data seridsredtd-
ings every ten minutes. We find empirically that a ten minwera
age reveals useful information from the data. It smoothssiemts,
yet samples at a relatively high frequency. This data sésidsen
converted into a data matrix such that each row vector reptes
the data a sensor collects during a day, from midnight to ighdn
In a given day, we have 144, ten minute intervals.

We normalize the data prior to building the model in orderdstb
characterize the “normal” behavior of the system. To do sosub-
tract the mean temperature of that given day (calculatedraggly
for each sensor) from each of these row vectors and normilee
readings in the RMS sense. Using normalized vectors enthaies
the diagonal elements of the correlation matrix are unithug;
each vector contributes equally to the PCA basis. This lsatathe
contribution of summer and winter to the model even though-su
mer days have higher variance. In order to obtain a well-betha
basis, we censor the days which have considerable inheois# n
and jitter from our training set. We apply a simple mediarefilp
remove these “bad” days.
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Figure 3: Daily temperature eigenvectors (basis vectorshide-
creasing order of eigenvalues. The top panel shows the eigen

vectors for the air temperature while the lower panel displays
the eigenvectors for soil temperature.

After cleaning the data, we compute the orthogonal eigenvec
(basis vectors) and order these vectors by decreasingwiges
as described at the start of Section 3. Figure 3 shows thddirst
eigenvectors obtained for air temperature and soil tentperdor
the LUYF deployment between the period of September 2005 to
July 2006. We find that the first four eigenvectors cover 9%h 35
the total variation in the air temperature data and 98.89¢%érsoll
temperature data (as defined by the sum of the first four eienv
ues of the diagonal matrix divided by the trace). We note that
first eigenvector accounts for 55% of the total variationtie &ir
temperature data.

The physical meaning of the different eigenvectors can ta-in
preted in the following way. The first component of the air tem
perature is a bell shape curve, corresponding to the slasvais
the temperature around 7 am, then cooling after 3pm. Thenseco
eigenvector is rising throughout the day monotonicallysalding
a warming/cooling trend from one day to another. The third-ve
tor causes the bell shaped curve of the temperature to siidefd
or backward, representing the effect of the seasonal way i
cooling. Finally, the fourth eigenvector is the broaderémgl short-
ening of the daily temperature cycle, again a seasonalteffec

The soil has a large inertia in responding to changes in the ex
ternal temperature, the characteristic timescale is lotiga a day.
This manifests itself in the fact that the most significageeivec-
tor is the cooling/warming, and all others (daily cycle,fskind
broadening) are substantially suppressed in amplitudehamd a
significant phase shift.



3.2 Expansion on the Basis and Long-Term
Trends

To complete the model, we factor the contributions of alksses
over all the days. We project all the daily row vectors on the b
sis vectors. This gives us four coefficients( ..., e;1) to describe
the daily behavior of the temperature for each sengfive, if we
add the mean temperature @g). Next, we create the data se-
ries (F, ..., E4) by averaging the coefficients(, ..., e;4) for all
sensors for a given day. In other words, th& entry in £, for
example, represents the average pfaken across all the sensars
for then'" day. In order to identify long-term trends, we iteratively
run a low-pass filter with a fixed width of one week over.. E4 to
get the smooth series 6fi, .., S4. Hereafter, we will use capitals
to denote a time series averaged over all the sensors.

The smoothed series exhibit strong correlatiofs.and Ss de-
scribe the beginning and the length of daytime, whergasle-
scribes the slow warming and cooling trends, associateld thi
changes of seasons. These smooth trends serve as the hackgro
to all the other variations.

3.3 Event detection

We begin by looking at the projections of each day’'s mean-
subtracted air temperature on the first four eigenvectotthofigh
the first four eigenvectors for air temperature represer®®% of
the total variation in the data, most of the information iswh by
the coefficients of the first eigenvector. Thus, we are abdetdyze
an entire day’s data by looking at ifs; value, thereby achieving
a massive compression. We then apply a suitable threshaldeon
E series to detect events: values below the threshold camelsjo
behavior that deviates from the expected behavior of theanatle
refer to this method as theA®1c method. This method however
does not take into account the seasonal drift.

We improve on the Bsic detector by removing the seasonal
drift and running a high pass filter on the, data series. We im-
plement the high-pass filter by computing the differerdge =
E; — S1. We then apply the same threshold mechanism orithe
series. We refer to this method as thesHPASSmethod. As we
show in Section 4 this method significantly increases thebarm
of events detected and reduces the number of false negatives

The last approach we present uses the inertia exhibitecssaih
temperature. Since soil temperature changes much slower co
pared to the air temperature, we look at the differences éstvthe
high-pass filtered serie$); for air temperature and the high-pass
filtered data seried); for soil temperature and then set a suitable
threshold for detecting events. We refer to this approacthas
DELTA method.

4. EVALUATION

We use our model to detect events on the deployment for the pe-
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Figure 4: Difference between Air temperature measurement

and model projection for the rain event on 2006-01-18.
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Figure 5: Projection values for different techniques on evat
and non-event days. The marker at the bottom indicates an

event.

were numerous anomalies in tiig series. This was the result of
sporadic direct sunlight heating up the motes. After Aptiere
was enough foliage cover that the motes (located at growd) le
were not exposed to the direct heating of the sun.

We focus on the efficiency of detecting the rain events only us
ing temperature data. There is a good physical basis fardhisng
rainfall the temperature suddenly drops, but once the saaver it
recovers. This produces a large transient on the shape d4he
hour cycle for that particular day, resulting in a smakercoeffi-
cient and a larger residual. Figure 4 illustrates this olzgérn. We
observed a major event on 2006-01-18. There was heavy rain be
tween 9:00 AM and 11:00 AM. We can clearly see large residuals

riod between September 2005 and August 2006 and compare theqgy this period.

results with the actual known events recorded by a weathéost
at Baltimore-Washington International (BWI) airport [32)/e as-
sume that rain at BWI implies rain at Johns Hopkins Univgysit
Baltimore which is located 25 miles away. In our evaluatiom,
only consider rain events which are prominent. That is, we-co
sider event days as days having precipitation greater thaom3
We considered 225 days starting from September 17, 2005uynd J
20, 2006, and found that 48 events fit this criterion.
There are many other types of events which have also occurred

during the days of our sampling: faulty sensors, motes ngoiit

of power, etc. Particularly interesting was a period of altiudays
from the middle of March 06 to the end of April 06 in which there

We evaluate the performance of the three methods i£5I18
HicHPAssand DELTA method. In our evaluation, we use the stan-

Table 1: Performance of different methods for detecting evets.

Method | Precision| Recall | False Negatives
BAsic 52.459% 64% 18

HIGHPASS | 51.28% 80% 10
DELTA 54.795% | 85.106% 7
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dard information retrieval metrics of precision and recdh this
case, precision is the fraction of reported events that weteally
rain events and recall is the fraction of rain events thatoodel re-
ported correctly. We also report false negatives, whichciffecall
but not precision. We attempt to strike a balance betweetigion
and recall. Our goal is to detect as many events as possilte wi
a true positive rate (precision) of at least 50%. Higher isien is
difficult to achieve given that our system also detects othen-
rain) events. Recall may be affected by the assumption #iat r
at BWI implies rain at JHU and vice versa. This is not alwayes th
case.

Table 1 summarizes the results for the different methods. Us
ing high-pass filtering and including soil temperature @ages re-
call without affecting precision substantially. TheeDra method
significantly outperforms the Bsic and the HGHPASSmethods.
We find that because of the inertia shown by soil temperathee,
eigen-coefficients; for soil temperature show sharp changes on
the day(s) after the event. This simplifies the identificattbevent
days.

Figure 5 illustrates the data series generated by each oh&tho
the period between 12/13/2005 and 01/02/2006. The rairteaea
indicated by a triangular marker at the bottom. We can seetltlea
DeLTA method shows sharper negative peaks compared to the othe
methods on event days and shows lower peaks for non-evest day
Notice that the large downward spike shown on day 4 (12/135p0
corresponds to a large event.

We are able to detect most events days, missing only 7 with the
DELTA method. Again, we focus on recall, given that non-rain
events occur and pollute our precision statistics. Theipi@at
recall curves for different threshold values (Figure 6)whdhat
good recall can be achieved at higher than 50% precisionc@he
verse is not true. High recall matches well with our applaat
needs; reporting events when they occur supports netwag-ad
tation and identifies interesting regions of data to scésitiln all
likelihood, precision and recall would be much improvedhwitore
accurate and local weather monitoring — a more accurateufgto
truth” — and considering multiple types of events.

5. DISCUSSION AND FUTURE WORK

In this paper we present an application of techniques fran st
tistical signal processing to detect the presence of eergsrain
events) that deviate from the regular physical patternsesised by
a sensor network. We do this by using a variant of the Priricipa
Component Analysis (PCA) technique to generate a compaet pr

file for ‘normal’ measurements. We can then compare actua¢mo
measurements with model predictions and classify theries&gin
which the two diverge significantly as events of interest. &al-
uate the performance of the proposed mechanisms using tampe
ture measurements, collected over a year by a small enventah
monitoring network, to detect the onset of rain events. Qer p
liminary results show that this technique is able to detezstnain
events, with small number of false positives, even in thegmnee

of large foreground variations and a substantial seasaiftd.d

This is only the beginning—one can carry this approach much
further. While we present event detection in its offline isgttthe
observation that only a small number of components can atalyr
describe the collected data suggests that the same metheais
be implemented on the network’s motes. In an online setting,
can load the motes with the basis vectors and thresholdsechp
from historical data and project the daily time-series om ltasis.

In order to build the daily time-series, one can create @&sedm-
prising of what is already observed for the current day andlioe

it with sample bin means for the remaining portion of the dag.
wrap around the average vector to the yet to be observedskerie
This is a light-weight, computationally inexpensive, ailasam-
pling algorithm that will enable real-life WSN deploymendsn-
fronted with slowly varying environments as well as sudddis;
crete events. Efficient event detection is at the core of daytive
observing strategy, and we demonstrate how this can be done o
today's WSN platforms.

At this point the method is able to detect global eveitsevents
that all the sensors experience. However, one would likesteal
localized events. While it is seemingly possible to apply same
PCA technique to detect events experienced by a single riote,
becomes harder to differentiate between an actual everd amal-
functioning sensor. The question is then how much additiona
formation is necessary to separate faults from actual evehie
sensors are expected to have variations due to their lovaben
ment (located near/far from a stream, sitting on a hillsiddéh\a
steep gradient, etc.) which will cause small, but conststarre-
lated changes. The task is then to find groups of sensors wiité-c
lated measurements. We can do so by removing the obvious dalil
foregrounds, and the long seasonal trends, at which poieiyect
to see these small correlated differences in the behavisemsors
rin the same group. Once such groups are created, we can empar
the projected measurements of a mote with the measurements o
other group members. If those agree, then a localized evembst
likely occurring, otherwise one (or more) of the sensorsfaudty.

So far, we completely exclude from the training set, day$wit
partial data in which due to some hardware errors we did nbt ge
a reading for every one of the 144 sampling periods. Howater,
is easy to apply a “gappy” Karhunen-Loeve transformati@3],
in which the expansion coefficients can still be computed ave
partial support. Doing so, will enable the creation of a meygre-
sentative compressed model of the measurement data anfdifyppe
lead to higher detection accuracy.
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