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ABSTRACT
We present an application of statistical signal processingtechniques
to the problem of event detection in wireless sensor networks used
for environmental monitoring. The proposed approach uses the
well-established Principal Component Analysis (PCA) technique
to build a compact model of the observed phenomena that cap-
tures daily and seasonal trends in the collected measurements. We
subsequently use the divergence between actual measurements and
model predictions to detect the existence of discrete events within
the collected data streams. Our preliminary results show that this
event detection mechanism is sensitive enough to detect theonset
of rain events using the temperature modality of a wireless sensor
network.

1. INTRODUCTION
A number of testbeds (e.g., [1, 2, 3]) have shown the potential

of wireless sensor networks (WSNs) to collect environmental data
at previously unimaginable spatial and temporal densities. At the
same time, these developments present many novel data manage-
ment challenges. First, our experience deploying an environmen-
tal monitoring network has demonstrated the shortcomings of the
static behavior of current sensor networks. For example, scien-
tists would like to sample the environment at a high frequency to
capture detailed information about “interesting” events,but doing
so continuously would create an inordinate amount of data. On
the other hand, sampling at a lower frequency generates lessdata
but can potentially miss important temporal transients. Second, the
large amount of data that these networks generate complicates the
querying and post-processing stages. Rather than manuallytravers-
ing through the collected data, scientists would prefer to query for
measurements related with certain events (e.g., significant rainfall).

To address these issues, we need WSNs that can reason about
the phenomena they observe and adapt their behavior based on
events they detect. Possible adaptation strategies include chang-
ing the sampling rate as well as waking up nodes in the networkto
increase spatial coverage of the detected event [4, 5].

Sensors measure the superpositions of several processes driving

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright preserved by authors.

the phenomena under observation. These processes are oftendomi-
nated by predictable foregrounds, which can be significantly larger
than the subtle trends and variations that scientists are trying to
measure or the small events that they try to detect. In order to
interpret the measurements, it is then important to separate these
different signals into independent components. In environmental
monitoring, most sensors witness daily variations of all quantities
and seasonal trends. In addition, there are discrete natural events
(e.g., storms, rainfall, and strong winds) that have a separable ef-
fect on our data.

We present an approach using techniques of statistical signal pro-
cessing to decompose the sensor readings into various physically
meaningful components. In our approach, we perform a step-by-
step identification of various foregrounds. We identify thediurnal
cycle present in both the air and soil temperature sensor data and
we account for the effect of seasonal drift. We use all these priors
(daily cycle, seasonal drift) to detect events by identifying when
measurements diverge from those expected by the foregrounds.

Specifically, we explore variants of the Principal Components
Analysis method (PCA) [6] to extract features from the data col-
lected by the network and discover the multiple underlying physical
processes that generate the observed data. This process produces a
modelof “normal behavior.” Observations that diverge from the
model correspond well with punctuated events. We note that one
can build the PCA model offline using historical data and thata
small number of parameters summarize the phenomena that the
motes sense. Such a compact representation of the model enables
the design of a lightweight event detection mechanism that runs in
real time on the network’s motes.

We evaluate the performance of the proposed mechanism using
data from the Life Under Your Feet environmental sensing net-
work [1]. We execute the event detection algorithm to detectrain
events within the deployment area over ten months of the network’s
lifetime. We compare the list of detected events with precipitation
data recorded by a weather station at BWI airport.

This specific application reveals another aspect of the proposed
approach: while the motes in our network have soil moisture sen-
sors, these sensors cannot detect the onset of a rain event, because
soil moisture rises only after the water seeps through the soil. In-
stead, we use a combination of air and soil temperature measure-
ments to detect when rain starts to fall. Figure 1 indicates that tem-
perature varies immediately with the onset of an event, while soil
moisture lags by at least an hour. The model allows us to detect
the rain event rapidly based on indirect evidence prior to the rain’s
direct effect on soil moisture.

All the data and code used in this paper are publicly available at:
http://lifeunderyourfeet.org/en/src/
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Figure 1: Air temperature is a better indicator of the onset of a
rain event compared to soil moisture.

1.1 Environmental Sensing
While our solution generally applies to WSNs that collect large

amounts of data through multiple modalities, we present ourde-
sign through a environmental monitoring application we developed
and was deployed for over 18 months at an urban forest in Balti-
more, MD. The purpose of theLife Under Your Feetnetwork is soil
monitoring in which each of the network’s ten motes periodically
collects measurements, including soil temperature and soil humid-
ity, as well as ambient temperature and light.

We also extract weather information (air temperature and rain
events) from a weather station at the BWI airport located 25 miles
away from our deployment site. The data scraping program we use
inserts this data into the same database, allowing meteorological
information, such as rain duration and amount of rainfall, to be
correlated to the data collected by the sensor network.

2. RELATED WORK
PCA event detection constructs a model of system behavior. We

consider two applications of model-based event detection in de-
scribing related work. The first is an offline variant in whichevent
detection happens at the database that stores the measurements col-
lected by the network and is used to automatically identify “inter-
esting” regions within the swaths of data acquired by the sensor
network. The other is online in that motes in the network use mod-
els to detect events and subsequently alter their behavior.

Offline event detection provides a model suitable for querying
events from noisy and imprecise data. Both database systems[7, 8]
and sensor networks [9, 10, 11] have explored model-based queries
as a method for dealing with irregular or unreliable data. Models
in these systems include Gaussian processes [9], interpolation [12,
13], regression [9, 14], and dynamic-probabilistic models[8, 10].
We provide a PCA-based model specifically suited to event detec-
tion.

In the online case, sensor networks reduce the bandwidth re-
quirements of data collection by suppressing results that conform
to the model or compressing the data stream through a model rep-
resentation. This has coincident benefits on resource and energy
usage within the network. If sensors measure spatially correlated
values, values collected from a subset of nodes can be used toma-
terialize the uncollected values from other nodes [15, 16].Sim-
ilarly, temporally-correlated values may be collected infrequently
and missing values interpolated [10, 17]. By placing modelsin the
mote itself, the mote may transmit model parameters in lieu of the

data, compressing or suppressing entirely the data stream [18, 19,
20]. Our PCA model may be used for suppression and compression
and may also be used to alter the behavior and configuration ofthe
network,e.g. only collecting data when events occur and turning
off large portions of the network at other times.

Most research on event detection describes data fusion and in-
network event processing, rather than the detection of an event
based on the data. REED provides in-network joins to report
event conditions that are programmed declaratively [21]. Other
systems ensure that multiple sensors detect an event prior to re-
porting it [22, 23]. Our work focuses on using PCA models to
rapidly and accurately report an event at a single mote. Thissingle
mote report serves as an input to fusion and event query evalua-
tion. Other ecological monitoring systems use simple rising edge
or trigger/threshold based event detectors at each mote [24].

We use PCA to determine that a single or a sequence of measure-
ments aredissimilar to the normal behavior of the system, charac-
terized by its principal components. Similar uses of PCA include
anomaly and intrusion detection in computer networks [25, 26] and
leakage detection in gas sensor arrays [27]. Recently, PCA has
been applied to event detection in the Internet, specifically iden-
tifying correlated throughput and loss events on multiple Internet
paths [28]. However, the authors provide no details of theirap-
proach. There is a wealth of literature on the application ofPCA
for process control and process monitoring. [29] is one of many pa-
pers that address the application of PCA to process control,often
referred to as multivariate process control. Moreover, PCAfinds
application as a tool for visualizing outliers in multidimensional
data described by a large collection of similar curves [30].

Finally, modeling diurnal cycles exhibited by atmospherictem-
perature is a well studied problem in the environmental and atmo-
spheric sciences community. Smith et al. [31] describe how they
model surface temperature using empirical orthogonal functions
(EOFs) and use the projections on the orthogonal functions for
extracting features and analyzing the temperature variability from
different regions. EOFs are nothing but the basis vectors obtained
from PCA.

3. METHODOLOGY
Principal component analysis [6], also known as the Kar-hunen-

Loève transform (KLT), is a powerful statistical tool for simplify-
ing data by reducing high-dimensional datasets into datasets with
lower dimensions that approximate the original data. It does so
through singular value decomposition (SVD): an orthogonallinear
transform of a matrix containing the original data into an equivalent
diagonalized matrix.

Mathematically speaking, letXT be ann × m matrix, in which
each row represents a new set of measurements and each column
represents the measurements at a given time of day. In other words,
the number of columns represents the dimensionality of the original
space. The PCA transformation is then given byY

T = X
T · V,

in whichUΣV
T = SVD(XT), Σ is them × m diagonal matrix

containing the singular values ofXT, V is them × m matrix of
right singular vectors that form an orthonormal basis. In this paper,
we also refer to these as ourbasis vectors. U is then × m matrix
containing the left singular vectors. Then,Y

T is the projection of
the original data on the basis vectors which is anothern×m matrix.

In practice, we select the firstp ≪ m eigenvectors with maxi-
mum eigenvalues. These eigenvectors represent the “most impor-
tant” dimensions in that these dimensions have the maximum vari-
ance and strongest correlation in the dataset. We then calculate an-
other projectionYT

p = X
T · Vp, whereVp is generated by tak-

ing the firstp columns ofV (i.e. the columns that correspond to the
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Figure 2: Mean subtracted profile of air and soil temperature
(latter scaled up by a factor of 20) for a typical 24 hour cycle.

highestp eigenvalues). The dimensionality ofY
T
p is n × p, where

p is the dimensionality of the resulting subspace.
Thus, the original dataset can be reduced to just those dimen-

sions (eigenvectors) with large eigenvalues. Data analysis may be
performed in the lower dimensional representation with good fi-
delity to results on the original data. The lower dimensional space
offers benefits not only in data size, computational complexity, and
ease of visualization, but also these vectors represent the“typical”
patterns of the data, whereas the residuals correspond to “atypical”
behavior.

3.1 Applying PCA to sensor measurements
We apply PCA to air temperature and soil temperature sensor

readings. Sensor readings exhibit typical diurnal cycles,which
dominate every other signal present. Figure 2 shows the mean-
subtracted profile of a typical day for air temperature and soil tem-
perature. We note the rise in temperature as the sun rises in the
morning and the fall in temperature as the sun sets in the evening for
air temperature. We also observe that soil temperature changes lags
air temperature changes by several hours, owing to the inertia of the
soil. There is a noticeable phase shift between air temperature and
soil temperature. This pattern (AC component) is exhibitedby all
normal (non-event) days of all seasons around the average value
(DC component) for that day.

LUYF sensors record measurements once every minute. We ag-
gregate multiple readings, which produces a data series with read-
ings every ten minutes. We find empirically that a ten minute aver-
age reveals useful information from the data. It smooths transients,
yet samples at a relatively high frequency. This data seriesis then
converted into a data matrix such that each row vector represents
the data a sensor collects during a day, from midnight to midnight.
In a given day, we have 144, ten minute intervals.

We normalize the data prior to building the model in order to best
characterize the “normal” behavior of the system. To do so, we sub-
tract the mean temperature of that given day (calculated separately
for each sensor) from each of these row vectors and normalizethe
readings in the RMS sense. Using normalized vectors ensuresthat
the diagonal elements of the correlation matrix are unity. Thus,
each vector contributes equally to the PCA basis. This balances the
contribution of summer and winter to the model even though sum-
mer days have higher variance. In order to obtain a well-behaved
basis, we censor the days which have considerable inherent noise
and jitter from our training set. We apply a simple median filter to
remove these “bad” days.
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Figure 3: Daily temperature eigenvectors (basis vectors) in de-
creasing order of eigenvalues. The top panel shows the eigen-
vectors for the air temperature while the lower panel displays
the eigenvectors for soil temperature.

After cleaning the data, we compute the orthogonal eigenvectors
(basis vectors) and order these vectors by decreasing eigenvalues
as described at the start of Section 3. Figure 3 shows the firstfour
eigenvectors obtained for air temperature and soil temperature for
the LUYF deployment between the period of September 2005 to
July 2006. We find that the first four eigenvectors cover 90.95% of
the total variation in the air temperature data and 98.89% inthe soil
temperature data (as defined by the sum of the first four eigenval-
ues of the diagonal matrix divided by the trace). We note thatthe
first eigenvector accounts for 55% of the total variation in the air
temperature data.

The physical meaning of the different eigenvectors can be inter-
preted in the following way. The first component of the air tem-
perature is a bell shape curve, corresponding to the slow rise of
the temperature around 7 am, then cooling after 3pm. The second
eigenvector is rising throughout the day monotonically, describing
a warming/cooling trend from one day to another. The third vec-
tor causes the bell shaped curve of the temperature to slide forward
or backward, representing the effect of the seasonal warming and
cooling. Finally, the fourth eigenvector is the broadeningand short-
ening of the daily temperature cycle, again a seasonal effect.

The soil has a large inertia in responding to changes in the ex-
ternal temperature, the characteristic timescale is longer than a day.
This manifests itself in the fact that the most significant eigenvec-
tor is the cooling/warming, and all others (daily cycle, shift and
broadening) are substantially suppressed in amplitude andhave a
significant phase shift.



3.2 Expansion on the Basis and Long-Term
Trends

To complete the model, we factor the contributions of all sensors
over all the days. We project all the daily row vectors on the ba-
sis vectors. This gives us four coefficients (ei1, ..., ei4) to describe
the daily behavior of the temperature for each sensori (five, if we
add the mean temperature asei0). Next, we create the data se-
ries (E1, ..., E4) by averaging the coefficients (ei1, ..., ei4) for all
sensors for a given day. In other words, thenth entry in E1, for
example, represents the average ofe1 taken across all the sensorsi

for thenth day. In order to identify long-term trends, we iteratively
run a low-pass filter with a fixed width of one week overE1..E4 to
get the smooth series ofS1, .., S4. Hereafter, we will use capitals
to denote a time series averaged over all the sensors.

The smoothed series exhibit strong correlations.S3 andS4 de-
scribe the beginning and the length of daytime, whereasS2 de-
scribes the slow warming and cooling trends, associated with the
changes of seasons. These smooth trends serve as the background
to all the other variations.

3.3 Event detection
We begin by looking at the projections of each day’s mean-

subtracted air temperature on the first four eigenvectors. Although
the first four eigenvectors for air temperature represent 90.95% of
the total variation in the data, most of the information is shown by
the coefficients of the first eigenvector. Thus, we are able toanalyze
an entire day’s data by looking at itsE1 value, thereby achieving
a massive compression. We then apply a suitable threshold onthe
E1 series to detect events: values below the threshold correspond to
behavior that deviates from the expected behavior of the model. We
refer to this method as the BASIC method. This method however
does not take into account the seasonal drift.

We improve on the BASIC detector by removing the seasonal
drift and running a high pass filter on theE1 data series. We im-
plement the high-pass filter by computing the differenceD1 =
E1 − S1. We then apply the same threshold mechanism on theD1

series. We refer to this method as the HIGHPASSmethod. As we
show in Section 4 this method significantly increases the number
of events detected and reduces the number of false negatives.

The last approach we present uses the inertia exhibited by the soil
temperature. Since soil temperature changes much slower com-
pared to the air temperature, we look at the differences between the
high-pass filtered series,D1 for air temperature and the high-pass
filtered data series,D1 for soil temperature and then set a suitable
threshold for detecting events. We refer to this approach asthe
DELTA method.

4. EVALUATION
We use our model to detect events on the deployment for the pe-

riod between September 2005 and August 2006 and compare the
results with the actual known events recorded by a weather station
at Baltimore-Washington International (BWI) airport [32]. We as-
sume that rain at BWI implies rain at Johns Hopkins University,
Baltimore which is located 25 miles away. In our evaluation,we
only consider rain events which are prominent. That is, we con-
sider event days as days having precipitation greater than 3mm.
We considered 225 days starting from September 17, 2005 and July
20, 2006, and found that 48 events fit this criterion.

There are many other types of events which have also occurred
during the days of our sampling: faulty sensors, motes running out
of power, etc. Particularly interesting was a period of about 45 days
from the middle of March 06 to the end of April 06 in which there
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Figure 4: Difference between Air temperature measurement
and model projection for the rain event on 2006-01-18.
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Figure 5: Projection values for different techniques on event
and non-event days. The marker at the bottom indicates an
event.

were numerous anomalies in theE1 series. This was the result of
sporadic direct sunlight heating up the motes. After April,there
was enough foliage cover that the motes (located at ground level)
were not exposed to the direct heating of the sun.

We focus on the efficiency of detecting the rain events only us-
ing temperature data. There is a good physical basis for this: during
rainfall the temperature suddenly drops, but once the rain is over it
recovers. This produces a large transient on the shape of the24
hour cycle for that particular day, resulting in a smallere1 coeffi-
cient and a larger residual. Figure 4 illustrates this observation. We
observed a major event on 2006-01-18. There was heavy rain be-
tween 9:00 AM and 11:00 AM. We can clearly see large residuals
for this period.

We evaluate the performance of the three methods i.e. BASIC,
HIGHPASSand DELTA method. In our evaluation, we use the stan-

Table 1: Performance of different methods for detecting events.

Method Precision Recall False Negatives
BASIC 52.459% 64% 18

HIGHPASS 51.28% 80% 10
DELTA 54.795% 85.106% 7
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dard information retrieval metrics of precision and recall. In this
case, precision is the fraction of reported events that wereactually
rain events and recall is the fraction of rain events that ourmodel re-
ported correctly. We also report false negatives, which affect recall
but not precision. We attempt to strike a balance between precision
and recall. Our goal is to detect as many events as possible with
a true positive rate (precision) of at least 50%. Higher precision is
difficult to achieve given that our system also detects other(non-
rain) events. Recall may be affected by the assumption that rain
at BWI implies rain at JHU and vice versa. This is not always the
case.

Table 1 summarizes the results for the different methods. Us-
ing high-pass filtering and including soil temperature increases re-
call without affecting precision substantially. The DELTA method
significantly outperforms the BASIC and the HIGHPASSmethods.
We find that because of the inertia shown by soil temperature,the
eigen-coefficientsE1 for soil temperature show sharp changes on
the day(s) after the event. This simplifies the identification of event
days.

Figure 5 illustrates the data series generated by each method for
the period between 12/13/2005 and 01/02/2006. The rain events are
indicated by a triangular marker at the bottom. We can see that the
DELTA method shows sharper negative peaks compared to the other
methods on event days and shows lower peaks for non-event days.
Notice that the large downward spike shown on day 4 (12/16/2005)
corresponds to a large event.

We are able to detect most events days, missing only 7 with the
DELTA method. Again, we focus on recall, given that non-rain
events occur and pollute our precision statistics. The precision-
recall curves for different threshold values (Figure 6) shows that
good recall can be achieved at higher than 50% precision. Thecon-
verse is not true. High recall matches well with our application
needs; reporting events when they occur supports network adap-
tation and identifies interesting regions of data to scientists. In all
likelihood, precision and recall would be much improved with more
accurate and local weather monitoring – a more accurate “ground
truth” – and considering multiple types of events.

5. DISCUSSION AND FUTURE WORK
In this paper we present an application of techniques from sta-

tistical signal processing to detect the presence of events(e.g., rain
events) that deviate from the regular physical patterns witnessed by
a sensor network. We do this by using a variant of the Principal
Component Analysis (PCA) technique to generate a compact pro-

file for ‘normal’ measurements. We can then compare actual mote
measurements with model predictions and classify the instances in
which the two diverge significantly as events of interest. Weeval-
uate the performance of the proposed mechanisms using tempera-
ture measurements, collected over a year by a small environmental
monitoring network, to detect the onset of rain events. Our pre-
liminary results show that this technique is able to detect most rain
events, with small number of false positives, even in the presence
of large foreground variations and a substantial seasonal drifts.

This is only the beginning—one can carry this approach much
further. While we present event detection in its offline setting, the
observation that only a small number of components can accurately
describe the collected data suggests that the same mechanism can
be implemented on the network’s motes. In an online setting,one
can load the motes with the basis vectors and thresholds computed
from historical data and project the daily time-series on the basis.
In order to build the daily time-series, one can create a series com-
prising of what is already observed for the current day and combine
it with sample bin means for the remaining portion of the day (i.e.
wrap around the average vector to the yet to be observed series).
This is a light-weight, computationally inexpensive, adaptive sam-
pling algorithm that will enable real-life WSN deploymentscon-
fronted with slowly varying environments as well as sudden,dis-
crete events. Efficient event detection is at the core of any adaptive
observing strategy, and we demonstrate how this can be done on
today’s WSN platforms.

At this point the method is able to detect global events,i.e. events
that all the sensors experience. However, one would like to detect
localized events. While it is seemingly possible to apply the same
PCA technique to detect events experienced by a single mote,it
becomes harder to differentiate between an actual event anda mal-
functioning sensor. The question is then how much additional in-
formation is necessary to separate faults from actual events. The
sensors are expected to have variations due to their local environ-
ment (located near/far from a stream, sitting on a hillside with a
steep gradient, etc.) which will cause small, but consistent, corre-
lated changes. The task is then to find groups of sensors with corre-
lated measurements. We can do so by removing the obvious daily
foregrounds, and the long seasonal trends, at which point weexpect
to see these small correlated differences in the behavior ofsensors
in the same group. Once such groups are created, we can compare
the projected measurements of a mote with the measurements of
other group members. If those agree, then a localized event is most
likely occurring, otherwise one (or more) of the sensors arefaulty.

So far, we completely exclude from the training set, days with
partial data in which due to some hardware errors we did not get
a reading for every one of the 144 sampling periods. However,it
is easy to apply a “gappy” Karhunen-Loève transformation [33],
in which the expansion coefficients can still be computed over a
partial support. Doing so, will enable the creation of a morerepre-
sentative compressed model of the measurement data and hopefully
lead to higher detection accuracy.
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